注:2024年2月起,Kinesis Data Firehose也成为了独立产品Data Firehose。再加上之前成为独立产品的Managed Flink,Kinesis的三套件目前都成为了独立产品。
之前很多同学觉得Kinesis比较复杂,这里做一系列入门实验,方便快速采纳服务。点击每个标题后的连接跳转到对应文档。
典型的Kinesis数据流如下图。
场景1:KDF准实时流式入湖(1分钟级)+ 低频查询
使用Kinesis Data Firehose将数据导入S3数据湖,设置分区键,并转换为Parquet列格式。通过Athena可以极低的开销做低频查询。本方案成本低效果好,对现有系统不侵入,可作为现有大数据分析手段的补充。点击跳转:文档,视频。
场景2:KDF准实时流式入仓(1分钟级)+ 高频查询
使用Kinesis Data Firehose将原始数据以GZIP压缩方式在S3落盘,并按照60秒的间隔自动加载到数Redshift数据仓库。Redshift为MPP架构分布式数仓,支持通过JDBC方式调用,满足BI系统多并发的高频查询要求。点击跳转:文档。
场景3:KDS实时流式入仓(秒级)+ 高频查询
使用Kinesis Data Stream将原始数据放在Kinesis流中,可使用多种消费方式包括KDA(托管Flink)、Redshift等方式消费。本方案采用Redshift的物化视图方式对Kinesis数据流进行消费,并通过自动刷新物化视图实现秒级的延迟。Redshift可满足BI系统多并发的高频查询要求。点击跳转:文档。